Received 31 May 2006 Accepted 31 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Solange M. S. V. Wardell,^a Marcus V. N. de Souza,^a James L. Wardell,^b John N. Low^c and Christopher Glidewell^d*

^aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, ^bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.096 Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Acetone (2,6-dichlorobenzoyl)hydrazone:

chains of π -stacked hydrogen-bonded dimers

In the title compound, $C_{10}H_{10}Cl_2N_2O$, the aryl ring is almost orthogonal to the rest of the molecule. Molecules are linked into centrosymmetric dimers by $N-H\cdots O$ hydrogen bonds, and these dimers are linked into chains by a single $\pi-\pi$ stacking interaction.

Comment

We report here the molecular and supramolecular structure of the title compound, (I) (Fig. 1). Apart from the dichlorophenyl ring, the non-H atoms are nearly coplanar, as shown by the leading torsion angles (Table 1). The aryl ring is almost orthogonal to the rest of the molecule, with a dihedral angle of $82.5 (2)^{\circ}$ between the aryl ring and the mean plane through the rest of the non-H atoms. This is a consequence of the repulsive interactions between the lone pairs of electrons on the two Cl atoms and those on atoms N2 and O7.

The molecules are linked by paired N-H···O hydrogen bonds (Table 2) into cyclic centrosymmetric $R_2^2(8)$ (Bernstein *et al.*, 1995) dimers (Fig. 2), and these dimers are linked into chains by a single aromatic π - π stacking interaction. The aryl rings of the molecules at (x, y, z) and (1 - x, 2 - y, -z) are strictly parallel, with an interplanar spacing of 3.593 (2) Å. The ring-centroid separation is 3.695 (2) Å, corresponding to a ring offset of 0.862 (2) Å. Propagation by inversion of this interaction then links the hydrogen-bonded dimers into a π stacked chain running parallel to the $[01\overline{1}]$ direction (Fig. 3), but there are no direction-specific interactions between adjacent chains.

Experimental

2,6-Dichlorobenzoylhydrazine (3 mmol) was dissolved in acetone (30 ml) and the solution was heated under reflux for 1 h. The solution was then cooled and the excess solvent was removed under reduced pressure. The resulting solid product, (I), was crystallized from ethanol.

Figure 1

A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The molecular structure of compound (I), showing the formation of a hydrogen-bonded (dashed lines) $R_2^2(8)$ dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Crystal data

$C_{10}H_{10}Cl_2N_2O$	V = 558.03 (3) Å ³
$M_r = 245.10$	Z = 2
Triclinic, P1	$D_x = 1.459 \text{ Mg m}^{-3}$
a = 7.4980 (3) Å	Mo $K\alpha$ radiation
b = 8.1320 (2) Å	$\mu = 0.56 \text{ mm}^{-1}$
c = 9.7759 (3) Å	T = 120 (2) K
$\alpha = 71.609 \ (2)^{\circ}$	Lath, colourless
$\beta = 80.822 \ (2)^{\circ}$	$0.42 \times 0.10 \times 0.08 \text{ mm}$
$\gamma = 89.033 \ (2)^{\circ}$	

Figure 3

A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a π -stacked chain of hydrogen-bonded (dashed lines) dimers along [011]. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Data collection

Bruker Nonius KappaCCD area-	13458 measured reflections
detector diffractometer	2568 independent reflections
φ and ω scans	1970 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.045$
(SADABS; Sheldrick, 2003)	$\theta_{\rm max} = 27.6^{\circ}$
$T_{\min} = 0.822, \ T_{\max} = 0.957$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.096$ S = 1.032568 reflections 138 parameters H-atom parameters constrained

Table 1

Selected torsion angles ($^{\circ}$).

C2-C1-C7-N1	101.4 (2)	C7-N1-N2-C8	175.32 (16)
C1-C7-N1-N2	-2.8 (2)	N1-N2-C8-C9	178.37 (15)

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$			
$N1 - H1 \cdots O7^i$	0.85	2.09	2.9232 (18)	169			
Symmetry code: (i) $-x + 1, -y + 1, -z + 1$.							

All atoms were located in difference maps and then treated as riding atoms, with C-H = 0.95 (aromatic) or 0.98 Å (methyl) and N-H = 0.85 Å, and with $U_{iso}(H) = kU_{eq}(C,N)$, where k = 1.5 for the methyl groups and k = 1.2 for all other H atoms.

 $w = 1/[\sigma^2(F_0^2) + (0.0449P)^2]$

+ 0.2175P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.29 \text{ e} \text{ Å}^{-3}$ Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography
- Centre, Chemistry Department, NUI Galway, Ireland. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.